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Abstract. For the solution of convection-diffusion problems we present
a multilevel self-adaptive mesh-refinement algorithm to resolve locally
strong varying behavior, like boundary and interior layers. The method
is based on discontinuous Galerkin (Baumann-Oden DG) discretization.
The recursive mesh-adaptation is interwoven with the multigrid solver.
The solver is based on multigrid V-cycles with damped block-Jacobi
relaxation as a smoother. Grid transfer operators are chosen in agree-
ment with the Galerkin structure of the discretization, and local grid-
refinement is taken care of by the transfer of local truncation errors
between overlapping parts of the grid.

We propose an error indicator based on the comparison of the discrete
solution on the finest grid and its restriction to the next coarser grid. It
refines in regions, where this difference is too large. Several results of
numerical experiments are presented which illustrate the performance of
the method.

Keywords: convection-dominated problems, adaptive refinement, mul-
tigrid, discontinuous Galerkin method.

1 Introduction

Recently new interest arose in application of discontinuous Galerkin (DG) meth-
ods for the solution of partial differential equations of convection-diffusion type.
An important reason is their ability to conveniently handle difficulties related
to grid- and order-adaptation. This motivates our present work on self-adaptive
DG discretisation which is combined with a multigrid (MG) method so that
optimal efficiency can be expected.

A detailed description of the multigrid approach and the corresponding smoo-
thing analysis in the case of discontinuous Galerkin methods with constant co-
efficients can be found in [5, 6, 7].

The paper is organized as follows. Section 2 concerns the governing equation
and its discretisation. The third section describes the multigrid h-adaptive re-
finement algorithm. The adaptive criterion is presented in the fourth section and
the last section contains results from numerical experiments.
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2 Discontinuous Galerkin Discretisation

We consider the linear boundary value problem:

− ε∆u + ∇ · (bu) + cu = f in Ω ⊂ R
d, d = 1, 2, 3, (1)

u(x) = u0(x) on Γ = ∂Ω,

where x = (x1, . . . , xd), ε > 0 is a small parameter, the coefficients b(x) =
(b1(x), . . . , bd(x)) ∈ (C1(Ω))d, c(x) ≥ 0, c(x) ∈ L∞(Ω) and the right-hand side
f(x) ∈ L2(Ω). We assume that Ω allows a regular partitioning Ωh = {Ωe | ∪e

Ωe = Ω, Ωi ∩ Ωj = ∅, i �= j}, into equally sized square cells Ωe of size h.
As weak form for (1) we use Baumann-Oden’s [2, 1] discontinuous Galerkin

formulation: find u ∈ H1(Ωh), such that

L(u, v) = F (v) for all v ∈ H1(Ωh) , (2)

where H1(Ωh) is the broken Sobolev space

H1(Ωh) =
{
u ∈ L2(Ω) | u|Ωe ∈ H1(Ωe), ∀Ωe ∈ Ωh

}
,

L(u, v) =
∑

Ωe∈Ωh

(∫

Ωe

(ε∇u · ∇v − ∇v · bu + cuv) dx +
∫

∂Ωe\Γ−
vu−b · n ds

)

+
∫

Γint∪Γ

(
ε〈∇v〉 · [u] − ε〈∇u〉 · [v]

)
ds ,

F (v) =
∑

Ωe∈Ωh

∫

Ωe

vf dx +
∫

Γ

ε∇v · nu0 ds−
∫

Γ−
vu0b · n ds ,

Γ− = {x ∈ ∂Ω | (b · n)(x) < 0) denotes the instream boundary of the domain
Ω and n is the unit outward pointing normal on the boundary. With u−, the
‘upwind’ value of u is denoted, defined by u− = limε↓0 u(x− εb(x)). The interior
cell boundaries are denoted by Γint = ∪e∂Ωe \ ∂Ω.

The jump operator [·] for a scalar valued function w(x) and the average op-
erator 〈·〉 for a vector valued function τ (x) are defined at the common interface
Γi,j = Ωi ∩ Ωj between two adjacent cells Ωi and Ωj by

[w(x)] = w(x)|∂Ωini + w(x)|∂Ωj nj , 〈τ (x)〉 =
1
2
(τ (x)|∂Ωi + τ (x)|∂Ωj ) .

For the DG discretisation of (2) we take: find uh ∈ Sh such that

L(uh, vh) = F (vh) for all vh ∈ Sh, (3)

where Sh = {∑e φe, φe ∈ P3(Ωe), Ωe ∈ Ωh} denotes the space of piecewise
cubic polynomials on the partitioning Ωh. In order to introduce a basis of Sh we
first take the polynomials basis on the one-dimensional unit interval,

φ2n+m(t) = tn+m(1 − t)n+1−m, n = 0, 1, m = 0, 1. (4)

Then, on the unit cube in R
d we use a basis of tensor-product polynomials based

on (4) and a basis for P3(Ωe) is obtained by the usual affine mapping.
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The coefficients b, c and the right-hand side f are approximated using the
same set of basic functions (or a set of lower order). The discretisation (3) yields
a linear system Lhuh = fh, where the matrix Lh has a diagonal block structure
with blocks of size 4d × 4d. We order the basic functions cell-wise or point-wise
(for details see [5, 6, 7]), depending on the equation coefficients and h.

3 MG Realization on the Adaptive Grid

For the discontinuous Galerkin method we describe the application of an h-self-
adaptive multi-level algorithm [3, 4].

The algorithm to determine the mesh is closely connected with the discretiza-
tion and consist of several stages. In the first stage the equation is discretized
and solved on the global coarsest grid Ω0 with step size h0. In later stages,
k = 1, 2, · · · , some cells of Ωk−1 are selected for refinement. These cells are all
divided into 2d smaller cells of equal size, which together form the grid Ωk on
a subset of Ωk−1. The solution on Ωk is interpolated from Ωk−1 and several
relaxation sweeps are made on the interior of Ωk, followed by a coarse grid cor-
rection on the whole of Ωk−1. Thus, by recursive application, multigrid V-cycles
are made. More details are given below.

By the recursive construction of the meshes Ωk we see that the meshes cover
nested areas Ωk ⊂ Ωk−1, and that all cells in these meshes form a tree-structure.
In this tree, for k > 0 each cell has one father and possibly 2d children.
Restrictions and prolongations. Given the nested partitioning {Ωk} for the
domain Ω = Ω0, on each mesh Ωk we have a space of piecewise cubic polyno-
mials Sk and the restriction of Sk to Ωk+1 is a subset of Sk+1. This induces
a natural prolongation Pk+1,k : Sk → Sk+1 on Ωk+1. The restriction opera-
tor for the residues, R̄k,k+1 : Sk+1 → Sk is defined as the adjoint of Pk+1,k.
Because of the consistency of these operators with the DG discretisation, the
Galerkin relation exists between the discretisation on the coarse and the fine
grid Lk = R̄k,k+1Lk+1Pk+1,k. We use another restriction Rk,k+1 for the solu-
tion, which preserves the function values and the derivatives at the coarse cell
vertices. It is a left-inverse of the prolongation, Rk,k+1Pk+1,k = Ik, where Ik is
the identity operator on Sk.
The internal boundaries. In the case of local refinement the finer grid Ωk usu-
ally covers only a part of the domain, covered by the coarser grid Ωk−1. So some
cells Ωe ∈ Ωk have no neighbours on the same grid at some of their faces, but
these faces will be not on the boundary ∂Ω. We call this the internal boundary.
We take care that no internal boundaries coincide for different levels k, i.e., if
Ωe ∈ Ωk, then all the neighbours of its father F (Ωe) exist on Ωk−1. This can
always be ensured performing some additional refinements of neighbouring cells.

At the internal boundaries for the discretization on Ωk we take Dirichlet
boundary conditions, derived by interpolation from Ωk−1.
The relative truncation error. If uk is the solution of the fine grid system,
i.e., Lkuk = fk, then its restriction to the coarser grid Ωk−1 satisfies

Lk−1Rk−1,kuk = R̄k−1,kfk + τk−1,k(uk) ,
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where the relative local truncation error τk−1,k(yk) is defined by

τk−1,k(yk) = Lk−1Rk−1,kyk − R̄k−1,kLkyk .

During the computation, however, we do not know the fine grid solution uk, but
only an approximation ũk. So to obtain an accurate solution on the coarse grid,
that corresponds to the solution on the fine grid (where this exists), we solve the
coarse grid system Lk−1ũk−1 = f̃k−1, where

f̃k−1 =

⎧
⎨

⎩

fk−1 on Ωk−1 \ Ωk , where no finer grid exists,
R̄k−1,k f̃k + τk−1,k(ũk) on Ωk , where ũk is the current approx-

imation on the finer grid.

MG iteration. Each multigrid V-cycle on level k, denoted by MS(k, ν1, ν2),
consists of the following steps:

1. Perform ν1 (pre-) relaxation steps (damped block-Jacobi relaxation) on the
discrete system Lkũk = f̃k, taking as initial approximation

ũk =
{

Rk,k+1ũk+1 on Ωk+1 ,
ũk on Ωk \ Ωk+1 ;

2. If k > 0
– perform MS(k − 1, ν1, ν2) ;
– Compute the correction ũk = ũk + Pk,k−1 (ũk−1 − Rk−1,kũk) ;

3. With the current approximation for ũk perform ν2 (post-) relaxation steps
on the discrete system Lkũk = f̃k .

On the coarsest level MS(0, ν1, ν2) consists of ν1 + ν2 relaxation sweeps on Ω0.
Because this is a very coarse grid, an alternative way to solve L0ũ0 = f̃0 is by
Gaussian elimination.

4 Adaptation Criterion

On level Ω0 all cells are refined at least once. Let K be the current number of
grid levels. In order to decide which unrefined cells in Ωk, k = 1, 2, . . . , K, in the
structure will be further refined, we compare the current solution uk(x) and its
restriction to the previous level, Rk−1,kuk(x). The reason for this choice is the
following. Let u(x) be the exact solution of our problem (1) and let Rlu(x) be
its restriction to Ωl, where (similar to Rl,l+1) the restriction Rl : H1(Ω) → Sl

preserves the function values and the derivatives at the vertices of each Ωe ∈ Ωl.
Then, with u ∈ CM (Ωe),

‖Rl+1u − Rlu‖C(Ωe) < C‖u‖CM(Ωe)2
−lM , for M = 1, 2, 3, 4.

From this we derive that for piecewise CM -functions, M ≤ 4, and asymptotically
for large k and l

‖Rl+1u − Rlu‖C(Ωk
e ) � ql+1−k‖Rku − Rk−1u‖C(Ωk−1

e ) for l ≥ k, (5)
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with q = 2−M . Here Ωk
e ∈ Ωk and Ωk−1

e := F (Ωk
e ) is its father. For finite

l ≥ k estimate (5) may be not true: then always a smooth function u(x) can be
constructed such that ‖Rku−Rk−1u‖C(Ωk−1

e ) = 0, but ‖Rl+1u−Rlu‖C(Ωk
e ) > 0

for l ≥ k.
Let R̃u be the restriction of u to the unrefined cells of ∪K

k=1Ωk, where for
each unrefined cell Ωk

e ∈ Ωk we define R̃u := Rku, then under the assumption
of (5) we estimate ‖u − R̃u‖C(Ωk

e ) only by using ‖Rku − Rk−1u‖C(Ωk−1
e ) and q.

As during the computation we do not know Rku and Rk−1u, we use the best
available approximant uk. With rk := ‖uk − Rk−1,kuk‖C(Ωk−1

e ),

‖u − Rku‖C(Ωk
e ) ≤

∞∑

l=k

‖Rl+1u − Rlu‖C(Ωk
e ) �

∞∑

l=k

ql+1−krk =
q

1 − q
rk .

With T a desired tolerance and rk
q

(1−q) ≤ T for all unrefined Ωk
e ∈ ∪K

k=1Ωk, we
have

‖u − R̃u‖C(Ω) = max
Ωk

e

‖u − Rku‖C(Ωk
e ) � max

Ωk
e

rk
q

(1 − q)
≤ T.

Notice that we can estimate the local smoothness of the solution by estimating
q from computable equivalents of (5). Let

rl := ‖Rluk − Rl−1uk‖C(Ωl−1
e ), l ≤ k ,

where Ωl−1
e := F (Ωl

e), l ≤ k. Then asymptotically we expect q = liml→∞ rl/rl−1.
Based on this relation and additional heuristics we arrive at an estimated local
value qest. Then we introduce the local error estimate η(Ωk

e ) := rk
qest

(1−qest)
and

we refine cell Ωk
e if

η(Ωk
e ) > T or qest ≥ 1.

As the amount of work, needed to compute rl in the 2D and 3D case, can not
be neglected, in the examples below we only estimate rl even in the 1D case.

5 Examples

In all examples in this section, the gridrefinements started on an initial grid with
mesh size 1. Ten multigrid sweeps with 1 pre- and 1 post-smoothing iteration
(ν1 = ν2 = 1) are performed in each stage.

Example 1. We consider the one dimensional equation

εu′′ + (x − 1)u′ = −επ2 cos(π(x − 1)) − π(x − 1) sin(π(x − 1)), x ∈ (0, 2),

with Dirichlet boundary conditions, corresponding to the following exact solution

u(x) = erf
(
(x − 1)/

√
2ε

)
+ cos(π(x − 1)).

In Fig. 1 the exact solution and the difference between the exact and the ap-
proximate solution are plotted for ε = 0.0001 and T = 0.01. The corresponding
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Fig. 1. The exact solution for Example 1 and the corresponding error for T = 0.01

Fig. 2. The approximate solution for Example 2

grid is shown at the bottom of the right picture: 8 levels are used in order to
achieve the prescribed tolerance. Similar results are obtained for T = 0.001, then
9 levels are used. In both cases the grid is properly refined in the interior layer
area and the C-norm of the error is less than T. The total number of cells in the
final grid is respectively N = 28 and N = 32.

Example 2. In two dimensions a similar problem is considered, with an interior
layer skew to the mesh:

ε

(
∂2u

∂x2
+

∂2u

∂y2

)
+ (x + y − 1)

(
∂u

∂x
+

∂u

∂y

)
= f(x, y), x ∈ (0, 2), y ∈ (0, 2),

f(x, y) = −2επ2 cos(π(x + y − 1)) − 2π(x + y − 1) sin(π(x + y − 1)),

with Dirichlet boundary conditions, corresponding to the following exact solution

u(x, y) = erf
(
(x + y − 1)/

√
2ε

)
+ cos(π(x + y − 1)).

In Fig. 2 the approximate solution is plotted for ε = 0.0001 and T = 0.01.
The grid is refined around the interior layer and 8 levels are used to achieve the
prescribed tolerance. The C-norm of the difference between the exact and
the approximate solution is less than the prescribed tolerance.
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Fig. 3. The exact solution for Example 3 and the corresponding error for T = 0.01

Fig. 4. The approximate solution for Example 4

Example 3. The third example is a one-dimensional problem with a turning
point and two boundary layers:

εu′′ − (x − 1)u′ − u = 0, x ∈ (0, 2),

with Dirichlet boundary conditions, corresponding to the following exact solution

u(x) =
erf

(
(x − 1)/

√
2ε

)
exp((x − 1)2/2ε)

erf
(
1/

√
2ε

)
exp(1/2ε)

.

In Fig. 3 the exact solution and the difference between the exact and the
approximate solution are plotted, for ε = 0.0001 and T = 0.01. To achieve
the result the algorithm uses 14 levels and the resulting C-norm of the error is
less than 0.01. If we require T = 0.001, 15 levels are used and the maximal error
is less than 0.001.

Example 4. The following two dimensional problem is considered

ε

(
∂2u

∂x2
+

∂2u

∂y2

)
− x

∂u

∂x
− y

∂u

∂y
− 2u = f(x, y), x ∈ (0, 1), y ∈ (0, 1),

the right-hand side f(x, y) and Dirichlet boundary conditions correspond to the
exact solution

u(x, y) = −xy(1 − exp((x − 1)/ε)(1 − exp((y − 1)/ε).
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The approximate solution for ε = 0.01 and T = 0.01 is plotted in Fig. 4. The
grid is properly refined around the boundary layers and the C-norm of the error
is less than 0.01. The algorithm uses 8 levels. Note, in this case the solution is
sufficiently smooth and if we take q = 2−4, almost the same grid refinement is
achieved.

6 Conclusion

One- and two-dimensional numerical experiments demonstrate that the proposed
self-adaptive mesh-generation, embedded in a multigrid strategy and applied
with the Baumann-Oden discontinuous Galerkin method, can be successfully
used for the automatic resolution of boundary and interior layers in the solution
of convection-dominated problems. The strategy is based on the comparison of
the numerical approximation on the finest and the one-but-finest grid. Thus, it
makes use of the local regularity of the solution. The method used to estimate
the local regularity, qest, is still based on heuristic arguments. Although the
numerical experiments are quite satisfying, the mathematical motivation needs
a more solid theoretical base. This is a subject for further research.
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